Stereoselective Olefin Insertion Reactions of Chiral (EBI) $Zr(\eta^2$ -pyrid-2-yl)⁺ and (EBTHI) $Zr(\eta^2$ -pyrid-2-yl)⁺ Complexes

Stephan Rodewald and Richard F. Jordan*

Department of Chemistry University of Iowa Iowa City, Iowa 52242

Received December 9, 1993

Active isoselective α -olefin polymerization catalysts are generated from Brintzinger's C₂-symmetric *ansa* zirconocene complexes (EBI)ZrCl₂(1, EBI = ethylenebis(indenyl)) and (EBTHI)ZrCl₂ (2, EBTHI = ethylenebis(tetrahydroindenyl))¹ via activation with suitable cocatalysts.² The active species in these systems are believed to be chiral [chCp₂Zr(R)][A] ion pairs (chCp₂ = chiral *ansa* biscyclopentadienyl).^{3.4} There is great current interest in exploiting the stereodirecting properties of chCp₂M frameworks in other reactions.⁵ Achiral Cp₂Zr(η^2 -pyrid-2-yl)⁺ species insert olefins to yield azazirconacycles (eq 1), providing the basis for

an extensive body of stoichiometric and catalytic chemistry.⁶ Here we describe highly regio- and stereoselective olefin insertion reactions of chiral ^{ch}Cp₂Zr(η^2 -pyrid-2-yl)⁺ species derived from 1 and 2 which may be incorporated into a catalytic process.^{6a}

Protonolysis⁷ of rac-(EBI)ZrMe₂(3)⁸ and rac-(EBTHI)ZrMe₂ (4) with [HN(ⁿBu)₃][BPh₄] in the presence of excess 2-picoline yields rac-(EBI)Zr(η^2 -6-Me-pyrid-2-yl)(2-picoline)⁺(5,91%) and rac-(EBTHI)Zr(η^2 -6-Me-pyrid-2-yl)(2-picoline)⁺(6,91%) as the BPh₄- salts (eq 2; the S,S ligand configurations are illustrated).

(3) (a) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (b) Hlatky,
G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728.
(c) Marks, T. J. Acc. Chem. Res. 1992, 25, 57. (d) Bochmann, M.; Jaggar,
A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (e) Eisch,
J. J.; Pombrik, S. I.; Zheng, G.-X. Organometallics 1993, 12, 3856.

(4) For isolable ^{ch}Cp₂M(R)⁺ species, see: (a) Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch, G. D. Organometallics 1990, 9, 1539. (b) Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321. (c) Horton, A. D.; Orpen, A. G. Organometallics 1993, 12, 633.

(5) See ref 4b and: (a) Grossman, R. B.; Doyle, R. A.; Buchwald, S. L. Organometallics 1991, 10, 1501. (b) Morken, J. P.; Didiuk, M. T.; Hoveyda, A. H. J. Am. Chem. Soc. 1993, 115, 6997. (c) Coates, G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1993, 115, 91. (d) Hong, Y.; Kuntz, B. A.; Collins, S. Organometallics 1993, 12, 964. (e) Collins, S.; Kuntz, B. A.; Hong, Y. J. Org. Chem. 1989, 54, 4154. (f) Colletti, S. L.; Halterman, R. L. J. Am. Chem. Soc. 1992, 13, 1005. (g) Chen, Z.; Halterman, R. L. J. Am. Chem. Soc. 1992, 114, 2276. (h) Broene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 12569.

Table 1. Products of Olefin Insertion Reactions of 5, 6, 15, 18, and 19 (See Eqs 2 and 3 for Positions of the Substituents R¹, a, b, and c)

product	ligand	anion	R1	a	Ъ	c	de (%)ª
7	EBI	BPh4-	Me	н	н	Me	83
8	EBTHI	BPh ₄ -	Me	н	Н	Me	64
9	EBI	BPh ₄ -	Me	н	Н	Bu	83
10	EBTHI	BPh₄ [−]	Me	н	Н	Bu	66
11	EBI	BPh₄ [−]	Me	Ph	Н	н	>98
12 ^b	EBTHI	BPh₄ [−]	Me	Ph	Н	н	>98
13a ^c	EBI	BPh₄ ⁻	Me	TMS	Н	н	>98
13b ^d	EBI	BPh₄ [−]	Me	н	Н	TMS	
14ae	EBTHI	BPh ₄ -	Me	TMS	Н	н	>98
14b ^d	EBTHI	BPh₄ ⁻	Me	н	Н	TMS	
16	EBI	$MeB(C_6F_5)_3^-$	Me	Me	Me	н	>98
17	EBI	$MeB(C_6F_5)_3^-$	Me	Me	Н	Me	>98
20	EBI	$MeB(C_6F_5)_3^-$	Ph	н	Н	Me	>98
21	EBI	$MeB(C_6F_5)_3^-$	Н	Н	Me	Н	21

^a NMR detection limit ca. 2%. ^b Stereochemistry assigned by analogy to 11. ^c Ratio of 13a/13b = 88/12. ^d Regiochemistry confirmed by GC/ MS analysis of hydrolysis products. Stereochemistry at C β assigned by analogy to 7 and 8. ^c Ratio of 14a/14b = 94/6.

Complexes 5 and 6 exist as mixtures of "N-inside" and "N-outside" isomers which differ in the orientation of the η^2 -pyridyl ligand.⁹

Pyridyl complexes 5 and 6 readily insert α -olefins (23 °C, CH₂Cl₂, 1 equiv of 2-picoline is liberated) to yield azazirconacyles 7-14 (eq 2 and Table 1), which were isolated as crystalline mixtures of stereo-/regioisomers. In general, these mixtures could not be separated by recrystallization, and structural assignments were made by 1-D and 2-D NMR methods.¹⁰ Propene and 1-hexene undergo 1,2 insertion, yielding 7–10 as mixtures of diastereomers which differ in the configuration of C β . Surprisingly, in the major diastereomer, the β -substituent points toward the C₆ ring of the EBI/EBTHI ligand.¹¹ This stereoselectivity is opposite that of α -olefin insertions of (EBTHI)Zr(R)⁺ species (R > Me).¹² The de values are similar for the two olefins but are markedly

M.; Wilson, L. M. J. Chem. Soc., Chem. Commun. 1986, 1610.
(8) Rac-3 was prepared (90%) by reaction of rac-1 with Me₂Mg in Et₂O followed by workup with dioxane. Reaction of 1 with MeLi/Et₂O yielded rac-3 contaminated with 50% meso-3 at 23 °C and ca. 5% at -42 °C.
(9) Isomer ratios are 2.3/1 (5) and 3.7/1 (6) at -20 °C; structures were structure with social structures were structure of the struct

(9) Isomer ratios are 2.3/1 (5) and 3.7/1 (6) at -20 °C; structures were not assigned. Isomer exchange is rapid at 23 °C.
(10) Yields for eq 2: 100% NMR, 67-84% isolated. Yields for eq 3: 95-

(10) Yields for eq 2: 100% NMR, 67-84% isolated. Yields for eq 3: 95-100% NMR, 90% isolated. Characterization data and stereo/regiochemical assignments are given as supplementary material.

(11) The configuration of the major diastereomer of 7-10 is S,S,S (or R,R,R), where the first two entries denote the configurations of the EBI/ EBTHI bridgehead carbons and the third denotes that of the metallacycle β -carbon. The minor diastereomer configuration is S,S,R (or R,R,S).

β-carbon. The minor diastereomer configuration is S,S,R (or R,R,S).
(12) (a) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987, 109, 6189.
(b) Pino, P.; Galimberti, M. J. Organomet. Chem. 1989, 370, 1. (c) Pino, P.; Galimberti, M.; Prada, P.; Consiglio, G. Makromol. Chem. 1990, 191, 1677.
(d) Waymouth, R.; Pino, P. J. Am. Chem. Soc. 1990, 112, 4911.

^{(1) (}a) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1982, 232, 233. (b) Wild, F. R. W. P.; Wasiucionek, M.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1985, 288, 63. (c) Schäfer, A.; Karl. E.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1987, 323, 87. (d) Collins, S.; Kuntz, B. A.; Taylor, N. J.; Ward, D. G. J. Organomet. Chem. 1988, 342, 21.

⁽²⁾ Leading references: (a) Kaminsky, W.; Külper, K.; Brintzinger, H.
H.: Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507. (b) Ewen,
J. A. J. Am. Chem. Soc. 1984, 106, 6355. (c) Ewen, J. A.; Haspeslagh, L.;
Atwood, J. L.; Zhang, H. J. Am. Chem. Soc. 1987, 109, 6544. (d) Soga, K.;
Shiono, T.; Takemura, S.; Kaminsky, W. Makromol. Chem., Rapid Commun.
1987, 8, 305. (e) Longo, P.; Grassi, A.; Pellecchia, C.; Zambelli, A.
Macromolecules 1987, 20, 1015. (f) Spaleck, W.; Antberg, M.; Dolle, V.;
Klein, R.; Rohrmann, J.; Winter, A. New J. Chem. 1990, 14, 499. (g) Collins,
S.; Gauthier, W. J.; Holden, D. A.; Kuntz, B. A.; Taylor, N. J.; Ward, D. G.
Organometallics 1991, 10, 2061. (h) Ewen, J. A.; Elder, M. J.; Jones, R. L.;
Haspeslagh, L.; Atwood, J. L.; Bott, S. G.; Robinson, K. Makromol. Chem.,
Makromol. Symp. 1991, 48/49, 253. (i) Chien, J. C. W.; Tsai, W.; Rausch,
M. D. J. Am. Chem. Soc. 1991, 113, 8570.

^{(6) (}a) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778. (b) Jordan, R. F.; Taylor, D. F.; Baenziger, N. C. Organometallics 1990, 9, 1546. (c) Jordan, R. F.; Guram, A. S. Organometallics 1990, 9, 2116. (d) Guram, A. S.; Jordan, R. F. Organometallics 1990, 9, 2190. (e) Guram, A. S.; Jordan, R. F. Organometallics 1991, 10, 3470. (f) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1991, 113, 1833. (g) Guram, A. S.; Jordan, R. F. J. Org. Chem. 1992, 57, 5994.

^{(7) (}a) Turner, H. W.; Hlatky, G. G. Eur. Pat. Appl. 0 277 003, 1988. (b) Turner, H. W. Eur. Pat. Appl. 0 277 004, 1988. (c) Lin, Z.; LeMarechal, J.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127. (d) Bochmann, M.; Wilson, L. M. J. Chem. Soc., Chem. Commun. 1986, 1610.

higher for the EBI system and increase at lower temperatures (5 reacts with 1-hexene to yield 9 with 89% de at -10 °C).

To probe stereoselection at the developing $C\alpha$, several olefins which, for electronic reasons,^{6d,e} undergo 2,1 insertion were examined. Styrene reacts regio- and stereospecifically with 5 and 6 to yield 11 and 12, in which the Ph substituent points *away* from the EBI/EBTHI C₆ ring.¹³ Vinyltrimethylsilane reacts similarly to yield 13a and 14a. In these cases, minor amounts of the regioisomeric 1,2 insertion products 13b and 14b are also observed.

Disubstituted olefins do not displace the 2-picoline ligand of 5 or 6 and thus are not inserted. However, the base-free species $[(EBI)Zr(\eta^{2}-6-Me-pyrid-2-yl)][CH_{3}B(C_{6}F_{5})_{3}]$ (15)¹⁴ reacts stereospecifically with *cis*- and *trans*-2-butene to yield cis insertion products 16 and 17, respectively (eq 3 and Table 1). In both

cases, the α -Me group points *away from* the EBI C₆ ring.¹⁵ The configuration of C α of **16** is analogous to that of 2,1 insertion products **11**, **12**, **13a**, and **14a**, while that at C β is opposite that of the major diastereomers of 7–10. This result and the higher stereoselectivities observed for the 2,1 insertions indicate that the stereodirecting forces have a stronger influence at the developing C α than at the developing C β .

The o-phenyl- η^2 -pyridyl species [(EBI)Zr(η^2 -6-Ph-pyrid-2-yl)]-[MeB(C₆F₅)₃] (**18**) and the parent unsubstituted species [(EBI)-Zr(η^2 -pyrid-2-yl)][MeB(C₆F₅)₃] (**19**) were examined to probe the influence of the ortho substituent (R¹) on the insertion stereoselectivity (eq 3). Complex **18** reacts stereospecifically with propene to yield **20**, which is structurally analogous to the major diastereomer of **7**. In contrast, the reaction of **19** with propene yields **21** with low and reversed (vs **7**) stereoselectivity.¹⁶

Molecular modeling studies of (EBTHI)Zr(CH₂CHMeR)-(propene)⁺ "activated complexes" (R = growing polypropylene chain) have provided insight to the origin of the stereoselectivity of α -olefin insertions of (EBTHI)Zr(R)⁺ species.¹⁷ In the favored adduct A (Chart I), which leads to product, olefin/CH₂CHMeR and olefin/EBTHI steric interactions both favor an olefin orientation in which the olefin substituent points away from the CH₂CHMeR chain and the EBTHI C₆ ring. Similar studies of (EBI)Zr(η^{2-6} -R¹-pyrid-2-yl)(olefin)⁺ activated complexes **B**-**D** provide a working rationale for the stereoselectivities in eqs 2 and

entries denote the configurations of the EBI bridgehead carbons and the third and fourth entries denote the configuration of $C\alpha$ and $C\beta$. The configuration of 17 is S,S,R,S (or R,R,S,R).

(16) Control experiments indicate that the counterion and the presence/ absence of excess 2-picoline do not influence the stereoselectivity.

(17) (a) Cavallo, L.; Guerra, G.; Oliva, L.; Vacatello, M.; Corradini, P. Polym. Commun. 1989, 30, 16. (b) Corradini, P.; Guerra, G.; Vacatello, M.; Villani, V. Gazz. Chim. Ital. 1988, 118, 173. (c) Castonguay, L. A.; Rappé, A. K. J. Am. Chem. Soc. 1992, 114, 5832. (d) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687. (e) See also ref 12d. (f) Longo, P.; Proto, A.; Grassi, A.; Ammendola, P. Macromolecules 1991, 24, 4624.

3.18 These calculations suggest that steric interactions between the pyridyl ortho substituent ($R^1 = Me$, Ph, or H) and an EBI C_6 ring cause the η^2 -pyridyl ligand to twist out of the metallocene equatorial plane. For adducts leading to 1,2 insertion, olefin/ η^2 -pyridyl interactions thus favor diastereomer B, in which the olefin substituent points toward the other EBI C₆ ring, over diastereomer C. This preference is counteracted by steric interactions between the olefin and the EBI C₆ ring in B. For small α -olefins (propene, hexene) and medium or large R¹ substituents (Me, Ph), the olefin/pyridyl steric interactions are dominant, B is favored, and high stereoselectivity is observed. When $R^1 = H$, the pyridyl ligand is not significantly twisted, and olefin/pyridyl interactions are comparatively less important. In this case B is less favored than C, and stereoselectivity is reduced/ reversed. In (EBI) $Zr(\eta^2-6-R^1-pyrid-2-yl)(olefin)^+$ adducts leading to 2,1 insertion (e.g., D) and in (EBI)Zr(η^2 -6-R¹-pyrid-2yl)(2-butene)⁺ adducts, interactions between the pro-C α olefin substituent (positioned in the narrow part of the metallocene wedge) and the EBI ligand determine the stereochemistry.

The utility of ${}^{ch}Cp_2Zr(\eta^2-pyridyl)^+$ species in asymmetric catalysis was tested with the (S,S)-(EBTHI)Zr system.^{1c} At 50 °C in the presence of H₂, (S,S)-(EBTHI)Zr $(\eta^2$ -6-Me-pyrid-2-yl)(2-picoline)^+ ((S,S)-6, generated in situ from (S,S)-4 and [HNBu₃][BPh₄] in the presence of excess 2-picoline) catalyzes the conversion of 1-hexene and 2-picoline to (R)-2-Me,6-(2-hexyl)-pyridine with 58% ee (eq 4).^{6a} The activity (ca. 0.1

turnover/h at 50 °C, total 6.2 turnovers, 3 mol % catalyst) is ca. 10x lower than the activity of the achiral Cp_2ZrMe_2 -derived catalyst under comparable conditions. The ee is in line with the de (64%) observed for the reaction of *rac*-4 with 1-hexene at 23 °C.

Acknowledgment. We thank John Snyder and Prof. Hans Brintzinger for helpful discussions and the Volkswagen Stiftung and NSF (CHE8822970) for support.

Supplementary Material Available: Complete characterization data and detailed discussions of stereo/regio-chemical assignments for new compounds (61 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽¹³⁾ The configurations of the major diastereomer of 13a and 14a is S, S, S (or R, R, R), where the first two entries denote the configurations of the EBI/ EBTHI bridgehead carbons and the third denotes that of the metallacycle α -carbon.

^{(14) 15} was generated in situ from 3, $B(C_6F_5)_3$, and 1 equiv picoline; see: Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623. (15) The configuration of 16 is S,S,R,R (or R,R,S,S), where the first two entries denote the configurations of the EBI bridgehead carbons and the third

⁽¹⁸⁾ Calculations were performed using Rappé's Universal Force Field as implemented in the Cerius 3.2 package (Molecular Simulations): Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III: Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. Structural constraints imposed on A-D are similar to those used in studies of (EBTHI)Zr(R)(olefin)⁺ systems.¹⁷